

Electromagnetic Induction Worksheet

Module 6: Electromagnetism

Instructions

Complete all questions. Show all working for calculation questions.

Data provided: - $\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$ - $e = 1.6 \times 10^{-19} \text{ C}$

Part A: Magnetic Flux (10 marks)

Question 1 (3 marks)

A square coil of side 0.2 m is placed in a uniform magnetic field of 0.5 T.

Calculate the magnetic flux through the coil when:

- (a) The plane of the coil is perpendicular to the field. (1 mark)
- (b) The plane of the coil is parallel to the field. (1 mark)
- (c) The normal to the coil makes an angle of 60° with the field. (1 mark)

Question 2 (3 marks)

A circular coil of radius 10 cm has 50 turns. It is placed perpendicular to a magnetic field that increases uniformly from 0 to 0.4 T in 2 seconds.

Calculate:

- (a) The change in magnetic flux through one turn. (1 mark)
- (b) The total change in flux linkage. (1 mark)
- (c) The induced EMF. (1 mark)

Question 3 (4 marks)

A rectangular coil ($0.3\text{ m} \times 0.2\text{ m}$) with 100 turns rotates in a 0.25 T magnetic field. At the instant when the plane of the coil makes an angle of 30° with the field direction:

- (a) Calculate the magnetic flux through the coil. (2 marks)
- (b) If the coil completes one rotation in 0.1 s , calculate the average rate of change of flux over a quarter rotation starting from this position. (2 marks)

Part B: Faraday's Law (15 marks)

Question 4 (4 marks)

A solenoid has 500 turns and cross-sectional area 0.005 m^2 . The magnetic field inside changes from 0.6 T to 0.2 T in 0.04 s .

- (a) Calculate the change in magnetic flux. (1 mark)
- (b) Calculate the induced EMF. (1 mark)
- (c) If the resistance of the solenoid is $5\text{ }\Omega$, calculate the induced current. (1 mark)
- (d) What is the direction of the induced current according to Lenz's Law? (1 mark)

Question 5 (4 marks)

A conducting rod of length 0.5 m moves at 4 m/s perpendicular to a uniform magnetic field of 0.3 T .

- (a) Calculate the EMF induced across the ends of the rod. (2 marks)
- (b) If the rod is connected to a circuit with resistance $2\text{ }\Omega$, calculate the current. (1 mark)
- (c) Calculate the force required to maintain constant velocity. (1 mark)

Question 6 (3 marks)

Explain, using Lenz's Law and conservation of energy, why:

- (a) A magnet falling through a copper tube falls slower than in free fall. (2 marks)
- (b) Energy must be supplied to move a conductor through a magnetic field when it is part of a closed circuit. (1 mark)

Question 7 (4 marks)

A search coil has 200 turns and area 2 cm^2 . When removed from a magnetic field in 0.05 s, an average EMF of 0.4 V is induced.

- (a) Calculate the average rate of change of flux. (2 marks)
- (b) Calculate the magnetic field strength. (2 marks)

Part C: Transformers (15 marks)

Question 8 (4 marks)

A step-down transformer has 2000 primary turns and 100 secondary turns. The primary voltage is 240 V AC.

- (a) Calculate the secondary voltage. (1 mark)
- (b) If the secondary current is 10 A, calculate the primary current (assuming 100% efficiency). (1 mark)
- (c) Calculate the power transferred. (1 mark)
- (d) Explain why the transformer would not work with DC input. (1 mark)

Question 9 (5 marks)

A transformer has efficiency of 92%. The primary coil has 1500 turns connected to 240 V AC supply. The secondary delivers 24 A at 50 V.

- (a) Calculate the output power. (1 mark)
- (b) Calculate the input power. (1 mark)
- (c) Calculate the primary current. (1 mark)
- (d) Calculate the power lost in the transformer. (1 mark)
- (e) Suggest TWO ways this power loss could be reduced. (1 mark)

Question 10 (6 marks)

Electricity is transmitted from a power station at 500 kW. The transmission lines have total resistance of 10Ω .

Compare the power loss when transmitting at:

- (a) 10,000 V (3 marks)
- (b) 250,000 V (2 marks)
- (c) Explain why high voltage transmission is used. (1 mark)

Extended Response (10 marks)

Question 11 (10 marks)

A student investigates electromagnetic induction by moving a bar magnet in and out of a solenoid connected to a galvanometer.

- (a) Describe what the student would observe when:
 - The magnet is moved toward the coil (1 mark)
 - The magnet is stationary inside the coil (1 mark)
 - The magnet is moved away from the coil (1 mark)
- (b) Explain the observations using Faraday's Law. (3 marks)
- (c) Explain how Lenz's Law determines the direction of the induced current. (2 marks)
- (d) How would the induced EMF change if:
 - The magnet is moved faster (1 mark)

- A stronger magnet is used (1 mark)

Answers

i Part A Answers

Q1: (a) $\Phi = 0.02$ Wb (b) $\Phi = 0$ Wb (c) $\Phi = 0.01$ Wb

Q2: (a) $\Delta\Phi = 0.0126$ Wb (b) Flux linkage = 0.628 Wb-turns (c) $\varepsilon = 0.314$ V

Q3: (a) $\Phi = 0.0075$ Wb per turn (b) Average rate = 0.60 Wb/s

i Part B Answers

Q4: (a) $\Delta\Phi = -0.002$ Wb (b) $\varepsilon = 25$ V (c) $I = 5$ A (d) Current opposes the decrease in flux (creates field in same direction)

Q5: (a) $\varepsilon = BLv = 0.6$ V (b) $I = 0.3$ A (c) $F = BIL = 0.045$ N

Q6: (a) Induced currents create magnetic field that opposes motion; energy from gravitational PE is converted to electrical energy in eddy currents \rightarrow heat (b) Work must be done against the magnetic force on the induced current

Q7: (a) Rate = 0.002 Wb/s (b) $B = 1.0$ T

i Part C Answers

Q8: (a) $V_s = 12$ V (b) $I_p = 0.5$ A (c) $P = 120$ W (d) DC produces constant flux - no change, no induced EMF

Q9: (a) $P_{out} = 1200$ W (b) $P_{in} = 1304$ W (c) $I_p = 5.43$ A (d) $P_{loss} = 104$ W (e) Laminated core, thicker wires, better core material

Q10: (a) At 10 kV: $I = 50$ A, $P_{loss} = 25$ kW (5%) (b) At 250 kV: $I = 2$ A, $P_{loss} = 40$ W (0.008%) (c) High voltage means low current, reducing I^2R losses