

Module 3: Waves and Thermodynamics

NSW HSC Physics Year 11

Table of contents

Module Overview	1
Inquiry Questions	1
Key Concepts	2
3.1 Wave Properties	2
3.2 Sound Waves	2
3.3 Thermodynamics	3
Key Definitions	3

Module Overview

This module explores wave phenomena and thermodynamic principles, covering mechanical waves, sound, and the behaviour of thermal energy in systems.

Indicative Hours: 30 hours

Related Outcomes:

- **PH11-10** explains and analyses waves and the transfer of energy by sound, light and thermodynamic principles

Inquiry Questions

1. What are the properties of all waves and wave motion?
2. How do thermodynamic principles apply to systems?

Key Concepts

3.1 Wave Properties

i Learning Focus

Understand the properties of mechanical waves and wave behaviour.

Content:

- Distinguish between transverse and longitudinal waves
- Define wavelength, frequency, period, amplitude, and wave speed
- Apply the wave equation to solve problems
- Analyse reflection, refraction, diffraction, and superposition

Key Formulas:

Quantity	Formula
Wave equation	$v = f\lambda$
Period-frequency	$T = \frac{1}{f}$
Wave speed (string)	$v = \sqrt{\frac{T}{\mu}}$

3.2 Sound Waves

i Learning Focus

Analyse sound as a longitudinal wave and understand resonance phenomena.

Content:

- Describe sound as a longitudinal mechanical wave
- Calculate the speed of sound in different media
- Explain resonance in air columns and strings
- Analyse beats and the Doppler effect

Key Formulas:

Quantity	Formula
Speed of sound in air	$v \approx 331 + 0.6T$ m/s
Beat frequency	$f_{beat} = f_1 - f_2 $
Doppler effect	$f' = f \frac{v \pm v_o}{v \mp v_s}$

Quantity	Formula

3.3 Thermodynamics

Learning Focus

Apply thermodynamic principles to energy transfer and transformations.

Content:

- Define temperature, thermal energy, and heat
- Apply the specific heat capacity formula
- Explain conduction, convection, and radiation
- Analyse the first and second laws of thermodynamics

Key Formulas:

Quantity	Formula
Heat energy	$Q = mc\Delta T$
Latent heat	$Q = mL$
Thermal expansion	$\Delta L = L_0\alpha\Delta T$

Key Definitions

Wave A disturbance that transfers energy through a medium or space without transferring matter.

Transverse Wave A wave where particles oscillate perpendicular to the direction of energy transfer.

Longitudinal Wave A wave where particles oscillate parallel to the direction of energy transfer.

Wavelength The distance between successive corresponding points on a wave.

Frequency The number of complete waves passing a point per second; measured in hertz (Hz).

Amplitude The maximum displacement of a particle from its equilibrium position.

Temperature A measure of the average kinetic energy of particles in a substance.

Specific Heat Capacity The amount of heat required to raise the temperature of 1 kg of a substance by 1°C.